A Venus day is longer than a Venus year

A Venus day is longer than a Venus year

Read that again, it’s not a year, but the length of a single day. In fact, a year on Venus is only 224.7 days, so a day on Venus is longer than its year. And things get even stranger. Venus rotates backwards. All of the planets in the Solar System rotate counter-clockwise when you look at them from above. But Venus turns clockwise.

Of course it’s impossible to stand on the surface of Venus and survive. And even if you could, you wouldn’t be able to see the Sun through the dense clouds. But if you could stand on Venus and see the Sun, you’d see the Sun rise in the West, pass through the sky for 116.75 days and then set in the East. That’s the opposite of what we see here on Earth.
Venus is the second planet from the Sun, orbiting it every 224.7 Earth days. The planet is named after the Roman goddess of love and beauty. After the Moon, it is the brightest natural object in the night sky, reaching an apparent magnitude of −4.6, bright enough to cast shadows. Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°. Venus reaches its maximum brightness shortly before sunrise or shortly after sunset, for which reason it has been referred to by ancient cultures as the Morning Star or Evening Star.

Venus is a terrestrial planet and is sometimes called Earth’s “sister planet” because of their similar size, gravity, and bulk composition (Venus is both the closest planet to Earth and the planet closest in size to Earth). However, it has also been shown to be very different from Earth in other respects. It has the densest atmosphere of the four terrestrial planets, consisting of more than 96% carbon dioxide. The atmospheric pressure at the planet’s surface is 92 times that of Earth’s. With a mean surface temperature of 735 K (462 °C; 863 °F), Venus is by far the hottest planet in the Solar System. It has no carbon cycle to lock carbon back into rocks and surface features, nor does it seem to have any organic life to absorb it in biomass. Venus is shrouded by an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. Venus may have possessed oceans in the past, but these would have vaporized as the temperature rose due to a runaway greenhouse effect. The water has most probably photodissociated, and, because of the lack of a planetary magnetic field, the free hydrogen has been swept into interplanetary space by the solar wind. Venus’s surface is a dry desertscape interspersed with slab-like rocks and periodically refreshed by volcanism.